15x^2=9x^2+83

Simple and best practice solution for 15x^2=9x^2+83 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x^2=9x^2+83 equation:



15x^2=9x^2+83
We move all terms to the left:
15x^2-(9x^2+83)=0
We get rid of parentheses
15x^2-9x^2-83=0
We add all the numbers together, and all the variables
6x^2-83=0
a = 6; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·6·(-83)
Δ = 1992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1992}=\sqrt{4*498}=\sqrt{4}*\sqrt{498}=2\sqrt{498}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{498}}{2*6}=\frac{0-2\sqrt{498}}{12} =-\frac{2\sqrt{498}}{12} =-\frac{\sqrt{498}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{498}}{2*6}=\frac{0+2\sqrt{498}}{12} =\frac{2\sqrt{498}}{12} =\frac{\sqrt{498}}{6} $

See similar equations:

| 2y-y=128 | | 5x+5=3x+@ | | 4/7+y=18/7 | | .4x+1.5=2.2-1.5x | | -7×7p=3p+23 | | (4a-10)/8=3 | | 5m=8m-8/5 | | 100=(x+2x)+5 | | 10x+13=2x+149 | | 4=1x+-2 | | X2+y=5 | | 25=8x-3x | | 8x+40=4x+120 | | 5x+12=-92-82x | |  2(2x-1)=30 | | 13-5x=14-8x | | 4x-3(x+1)=2(×-1)-14 | | 5x-4x^2+3=-1 | | 5x-4x2+3=0 | | 35/k=14/10 | | x=8=5 | | 3(t+9)=2(t-8) | | 25000(x)=10(x)(x)-6(x) | | 25000(x)=10x-6x | | 8x+45=4x+15 | | 2x=60=180 | | x-4+64=x | | 8x+15=5x–33 | | 3(t-3)=5(2t+t) | | 8x+15=5x-37 | | (x÷3)+9=14 | | x÷3)+9=14 |

Equations solver categories